Решение матриц. Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц Что дает матрица

Определение. Матрицей размера называется таблица чисел, состоящая изстрок истолбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (например А, В, С ), а элементы матрицы – строчными буквами с двойной индексацией: , где– номер строки,– номер столбца.

Например, матрица
,

или в сокращенной записи
, где
;
.

Виды матриц.

Матрица, состоящая из одной строки, называется матрицей (вектором)–строкой , а из одного столбца – матрицей (вектором)–столбцом :
– матрица–строка;

–матрица–столбец.

Матрица называется квадратной - го порядка, если число ее строк равно числу столбцов и равно . Например,
– квадратная матрица третьего порядка.

Элементы матрицы , у которых номер строки равен номеру столбца
, называютсядиагональными и образуют главную диагональ матрицы.

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной . Например,

–диагональная матрица третьего порядка.

Если у диагональной матрицы -го порядка все диагональные элементы равны единице, то матрица называетсяединичной матрицей -го порядка и она обозначается буквой. Например,
– единичная матрица третьего порядка.

Операции над матрицами.

Например, если
, то
.

Например:
,
,
.

Пример. Вычислить произведение матриц
,
где

;
.

Найдем размер матрицы-произведения (если умножение матриц возможно):
. Вычислим элементы матрицы. Элементполучается при умножении-ой строки матрицына-ый столбец матрицы.

Получаем
.

,
.

Из определения следует, что если матрица имеет размер
, то транспонированная матрицаимеет размер
.

Например:
;
.

Определители квадратных матриц

Определитель – это число, характеризующее квадратную матрицу.

Определитель матрицы обозначаетсяили.

Определителем матрицы первого порядка
, илиопределителем первого порядка , называется элемент
:

. Например, пусть
, тогда
.

Определителем матрицы второго порядка
, илиопределителем второго порядка , называется число, которое вычисляется по формуле:

.

Произведения
и
называютсячленами определителя второго порядка. Например, пусть
, тогда
.

Пусть дана квадратная матрица третьего порядка:

.

Определителем матрицы третьего порядка , или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет собой алгебраическую сумму, состоящую из 6 слагаемых, или 6 членов определителя. В каждое слагаемое входит ровно по одному элементу из каждой строка и каждого столбца матрицы. Знаки, с которыми члены определителя входят в формулу, легко запомнить, пользуясь схемой (рис.1.), которая называется правилом треугольников или правилом Сарруса .

Для вычисления определителей более высоких порядков потребуются некоторые дополнительные понятия.

Пусть дана квадратная матрица n -го порядка.

Минором
элемента
матрицы n -го порядка называется определитель матрицы (n 1)-го порядка, полученной из матрицы вычеркиванием-ой строки и-го столбца.

Например, минором элемента
матрицытретьего порядка будет:

Алгебраическим дополнением элемента матрицы n -го порядка называется его минор, взятый со знаком
:
, т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца (i + j ) – четное число, и отличается от минора знаком, когда (i + j ) – нечетное число. Например, ;
.

Для вычисления определителей квадратных матриц выше третьего порядка пользуются теоремой Лапласа.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

(разложение по элементам i - й строки;
);

(разложение по элементам j - го столбца;
);

По свойствам определителей, определитель матрицы не изменится, если к элементам любой строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число. Это свойство определителей и теорема Лапласа позволяют существенно упростить вычисление определителей высоких порядков. При вычислении определителей нужно преобразовать исходную матрицу так, чтобы преобразованная матрица имела строку (или столбец), содержащую как можно больше нулей, а потом найти определитель разложением по этой строке (столбцу).

Пример . Вычислить определитель четвертого порядка:

.

Преобразуем матрицу так, чтобы в 3-й строке все элементы, кроме одного, обращались в 0. Для этого умножим элементы 3-го столбца на (-4) и на 2 и прибавим их соответственно к элементам 1-го и 2-го столбцов. Раскладывая полученный определитель по элементам третьей строки, найдем

.

Полученный определитель третьего порядка можно вычислить по правилу треугольников или с помощью теоремы Лапласа, однако, можно продолжить упрощение матрицы. "Обнулим" в матрице третьего порядка элементы 2-ой строки (кроме одного). Для этого элементы третьего столбца матрицы, предварительно умножив на (-13) и на 4, сложим с элементами 1-го и 2-го столбцов соответственно:

.

Раскладывая по элементам второй строки и вынося общие множители, получаем.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

или сокращенно в виде A = (a i j) (i = ; j = ), числа a i j , называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (a i j) и B = (b i j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a i j = b i j .

Матрица, состоящая из одной строки или одного столбца, называется соответственно -строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

.

Если все элементы a i i диагонали равны 1, то она называется единичной и обозначается буквой Е:

.

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b a i j).

Суммой А = (a i j) и B = (b i j) одного размера называется C = (c i j) того же размера, элементы которой определяются по формуле c i j = a i j + b i j .

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (a i j) и B = (b j k), где i = , j= , k= , заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = a i 1 b 1 k + a i 2 b 2 k +... + a i m b m k = a i s b s k . (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны

С 11 = 1×1 +2×2 + 1×3 = 8, с 21 = 3×1 + 1×2 + 0×3 = 5, с 12 = 1×2 + 2×0 + 1×5 = 7,

с 22 =3×2 + 1×0 + 0×5 = 6, с 13 = 1×3 + 2×1 + 1×4 = 9, с 23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М 1 , М 2 и М 3 , причем доставка единицы продукции с каждого молокозавода в магазин М 1 стоит 50 ден. ед., в магазин М 2 - 70, а в М 3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1 , Т 2 , Т 3 , Т 4 . В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Расход ткани

Зимнее пальто

Демисезонное пальто

Линейная алгебра

Матрицы

Матрица размера m х n – это прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы принято обозначать заглавными латинскими буквами, а элементы – теми же, но строчными буквами с двойной индексацией.

Например, рассмотрим матрицу А размерности 2 х 3:

В этой матрице две строки (m = 2) и три столбца (n = 3), т.е. она состоит из шести элементов a ij , где i - номер строки, j - номер столбца. При этом принимает значения от 1 до 2, а от одного до трех (записывается ). А именно, a 11 = 3; a 12 = 0; a 13 = -1; a 21 = 0; a 22 = 1,5; a 23 = 5.

Матрицы А и В одного размера (m х n) называют равными , если они поэлементно совпадают, т.е. a ij = b ij для , т.е. для любых i и j (можно записать "i, j).

Матрица-строка – это матрица, состоящая из одной строки, а матрица-столбец – это матрица, состоящая из одного столбца.

Например, - матрица-строка, а .

Квадратная матрица n-го порядка – это матрица, в число строк равно числу столбцов и равно n.

Например, - квадратная матрица второго порядка.

Диагональные элементы матрицы – это элементы, у которых номер строки равен номеру столбца (a ij , i = j). Эти элементы образуют главную диагональ матрицы. В предыдущем примере главную диагональ образуют элементы a 11 = 3 и a 22 = 5.

Диагональная матрица – это квадратная матрица, в которой все недиагональные элементы равны нулю. Например, - диагональная матрица третьего порядка. Если при этом все диагональные элементы равны единице, то матрица называется единичной (обычно обозначаются буквой Е). Например, - единичная матрица третьего порядка.

Матрица называется нулевой , если все ее элементы равны нулю.

Квадратная матрица называется треугольной , если все ее элементы ниже (или выше) главной диагонали равны нулю. Например, - треугольная матрица третьего порядка.

Операции над матрицами

Над матрицами можно производить следующие операции:

1. Умножение матрицы на число . Произведением матрицы А на число l называется матрица В = lА, элементы которой b ij = la ij для любых i и j.

Например, если , то .

2. Сложение матриц . Суммой двух матриц А и В одинакового размера m х n называется матрица С = А + В, элементы которой с ij = a ij + b ij для "i, j.

Например, если то

.

Отметим, что через предыдущие операции можно определить вычитание матриц одинакового размера: разность А-В = А + (-1)*В.

3. Умножение матриц . Произведением матрицы А размера m x n на матрицу В размера n x p называется такая матрица С, каждый элемент которой с ij равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В, т.е. .


Например, если

, то размер матрицы-произведения будет 2 x 3, и она будет иметь вид:

В этом случае матрица А называется согласованной с матрицей В.

На основе операции умножения для квадратных матриц определена операция возведения в степень . Целой положительной степенью А m (m > 1) квадратной матрицы А называются произведение m матриц, равных А, т.е.

Подчеркнем, что сложение (вычитание) и умножение матриц определены не для любых двух матриц, а только для удовлетворяющим определенным требованиям к своей размерности. Для нахождения суммы или разности матриц их размер обязательно должен быть одинаковым. Для нахождения произведения матриц число столбцов первой из них должно совпадать с числом строк второй (такие матрицы называют согласованными ).

Рассмотрим некоторые свойства рассмотренных операций, аналогичные свойствам операций над числами.

1) Коммутативный (переместительный) закон сложения:

А + В = В + А

2) Ассоциативный (сочетательный) закон сложения:

(А + В) + С = А + (В + С)

3) Дистрибутивный (распределительный) закон умножения относительно сложения:

l(А + В) = lА + lВ

А (В + С) = АВ + АС

(А + В) С = АС + ВС

5) Ассоциативный (сочетательный) закон умножения:

l(АВ) = (lА)В = А(lВ)

A(BС) = (АВ)С

Подчеркнем, что переместительный закон умножения для матриц в общем случае НЕ выполняется, т.е. AB ¹ BA. Более того, из существования AB не обязательно следует существование ВА (матрицы могут быть не согласованными, и тогда их произведение вообще не определено, как в приведенном примере умножения матриц). Но даже если оба произведения существуют, они обычно разные.

В частном случае коммутативным законом обладает произведение любой квадратной матрицы А на единичную матрицу того же порядка, причем это произведение равно А (умножение на единичную матрицу здесь аналогично умножению на единицу при умножении чисел):

АЕ = ЕА = А

В самом деле,

Подчеркнем еще одно отличие умножения матриц от умножения чисел. Произведение чисел может равняться нулю тогда и только тогда, когда хотя бы одно из них равно нулю. О матрицах этого сказать нельзя, т.е. произведение ненулевых матриц может равняться нулевой матрице. Например,

Продолжим рассмотрение операций над матрицами.

4. Транспонирование матрицы представляет собой операцию перехода от матрицы А размера m x n к матрице А Т размера n x m, в которой строки и столбцы поменялись местами:

%.

Свойства операции транспонирования:

1) Из определения следует, что если матрицу транспонировать дважды, мы вернемся к исходной матрице: (A T) T = A.

2) Постоянный множитель можно вынести за знак транспонирования: (lА) T = lА T .

3) Транспонирование дистрибутивно относительно умножения и сложения матриц: (AB) T = B T A T и (A + B) T = B T + A T .

Определители матриц

Для каждой квадратной матрицы А вводится число |А|, которое называют ее определителем . Иногда его еще обозначают буквой D.

Это понятие является важным для решения ряда практических задач. Определим его через способ вычисления.

Для матрицы А первого порядка ее определителем называют ее единственный элемент |А| = D 1 = а 11 .

Для матрицы А второго порядка ее определителем называют число, которое вычисляют по формуле |А| = D 2 = а 11 * а 22 – а 21 * а 12

Для матрицы А третьего порядка ее определителем называют число, которое вычисляют по формуле

Оно представляет алгебраическую сумму, состоящую из 6 слагаемых, в каждое из которых входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Для запоминания формулы определителя принято пользоваться так называемым правилом треугольников или правилом Сарруса (рисунок 6.1).

На рисунке 6.1 схема слева показывает, каким образом выбирать элементы для слагаемых со знаком «плюс», - они находятся на главной диагонали и в вершинах равнобедренных треугольников, основания которых ей параллельны. Схема слева используется для слагаемых со знаком «минус»; на ней вместо главной диагонали берется так называемая побочная.

Определители более высоких порядков вычисляют рекуррентным способом, т.е. определитель четвертого порядка через определитель третьего порядка, определитель пятого порядка через определитель четвертого порядка и т.д. Для описания этого способа необходимо ввести понятия минора и алгебраического дополнения элемента матрицы (сразу же отметим, что сам способ, который будет рассмотрен далее, подходит и для определителей третьего и второго порядка).

Минором М ij элемента а ij матрицы n-го порядка называют определитель матрицы (n-1)-го порядка, полученной из матрицы А вычеркиванием i-й строки и j-го столбца.

Каждая матрица n-го порядка имеет n 2 миноров (n-1)-го порядка.

Алгебраическим дополнением A ij элемента а ij матрицы n-го порядка называют его минор, взятый со знаком (-1) (i+ j) :

A ij = (-1) (i+ j) *М ij

Из определения следует, что A ij = М ij , если сумма номеров строки и столбца четная, и A ij = -М ij , если она нечетная.

Например, если , то ; и т.д.

Способ вычисления определителя состоит в следующем: определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

(разложение по элементам i-й строки; );

(разложение по элементам j-го столбца; ).

Например,

Отметим, что и в общем случае определитель треугольной матрицы равен произведению элементов главной диагонали.

Сформулируем основные свойства определителей.

1. Если какая-либо строка или столбец матрицы состоит из одних нулей, то определитель равен 0 (следует из способа расчета).

2. Если все элементы какой-либо строки (столбца) матрицы умножить на одно и то же число, то и ее определитель умножится на это число (также следует из способа расчета – на расчет алгебраических дополнений общий множитель не влияет, а все остальные слагаемые умножены именно на это число).

Замечание: за знак определителя можно выносить общий множитель именно строки или столбца (в отличие от матрицы, за знак которой можно выносить общий множитель всех ее элементов). Например, , но .

3. При транспонировании матрицы ее определитель не изменяется: |А Т | = |А| (доказательство проводить не будем).

4. При перестановке местами двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

Для доказательства этого свойства вначале предположим, что переставлены две соседние строки матрицы: i-я и (i+1)-я. Для расчета определителя исходной матрицы осуществим разложение по i-й строке, а для определителя новой матрицы (с переставленными строками) – по (i+1)–й (которая в ней такая же, т.е. поэлементно совпадает). Тогда при расчете второго определителя каждое алгебраическое дополнение будет иметь противоположный знак, так как (-1) будет возводиться не в степень (i + j), а в степень (i + 1+ j), а в остальном формулы отличаться не будут. Таким образом, знак определителя изменится на противоположный.

Теперь предположим, что переставлены не соседние, а две произвольные строки, например, i-я и (i+t)-я. Такую перестановку можно представить как последовательное смещение i-й строки на t строк вниз, а (i+t)-й строки - на (t-1) строк вверх. При этом знак определителя поменяется (t + t – 1) = 2t – 1 число раз, т.е. нечетное число раз. Следовательно, в конечном итоге он поменяется на противоположный.

Аналогичные рассуждения можно поменять для столбцов.

5. Если матрица содержит две одинаковые строки (столбца), то ее определитель равен 0.

В самом деле, если одинаковые строки (столбцы) переставить местами, то будет получена та же самая матрица с тем же самым определителей. С другой стороны, по предыдущему свойству он должен поменять знак, т.е. D = -D Û D = 0.

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то определитель равен 0.

Это свойство основано на предыдущем свойстве и выносе за скобку общего множителя (после выноса за скобку коэффициента пропорциональности в матрице будут одинаковые строки или столбцы, и в результате этот коэффициент будет умножаться на ноль).

7. Сумма произведений элементов любой строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) той же матрицы всегда равна 0: при i ¹ j.

Чтобы доказать это свойство, достаточно заменить в матрице А j–ю строку на i–ю. В полученной матрице будет две одинаковые строки, поэтому ее определитель равен 0. С другой стороны, его можно вычислить разложением по элементам j -й строки: .

8. Определитель матрицы не изменяется, если к элементам строки или столбца матрицы прибавить элементы другой строки (столбца), умноженные на одно и тоже число.

В самом деле, пусть к элементам i–й строки прибавляют элементы j-й строки, умноженные на l. Тогда элементы новой i–й строки примут вид
(a ik + la jk , "k). Вычислим определитель новой матрицы разложением по элементам i-й строке (отметим, что алгебраические дополнения ее элементов при этом не изменятся):

Мы получили, что этот определитель не отличается от определителя исходной матрицы.

9. Определитель произведения матриц равен произведению их определителей: |АВ| = |А| * |В| (доказательство проводить не будем).

Рассмотренные выше свойства определителей используют для упрощения их вычисления. Обычно стараются преобразовать матрицу к такому виду, чтобы какой-либо столбец или строка содержали как можно больше нулей. После этого определитель легко найти разложением по этой строке или столбцу.

Обратная матрица

Матрицу А -1 называют обратной по отношению к квадратной матрице А, если при умножении этой матрицы на матрицу А как справа, так и слева получается единичная матрица: А -1 * А = А * А -1 = Е.

Из определения следует, что обратная матрица является квадратной матрицей того же порядка, что и матрица А.

Можно отметить, что понятие обратной матрицы аналогично понятию обратного числа (это число, которое при умножении на данное число дает единицу: а*а -1 = а*(1/а) = 1).

Все числа, кроме нуля, имеют обратные числа.

Чтобы решить вопрос о том, имеет ли квадратная матрица обратную, необходимо найти ее определитель. Если определитель матрицы равен нулю, то такая матрица называется вырожденной , или особенной .

Необходимое и достаточное условие существования обратной матрицы: обратная матрица существует и единственна тогда и только тогда, когда исходная матрица невырожденная.

Докажем необходимость. Пусть матрица А имеет обратную матрицу А -1 , т.е. А -1 * А = Е. Тогда |А -1 * А| = |А -1 | * |А| = |Е| = 1. Следовательно,
|А| ¹ 0.

Докажем достаточность. Чтобы его доказать, необходимо просто описать способ вычисления обратной матрицы, который мы всегда сможем применить для невырожденной матрицы.

Итак, пусть |А| ¹ 0. Транспонируем матрицу А. Для каждого элемента А Т найдем алгебраическое дополнение и составим из них матрицу , которую называют присоединенной (взаимной, союзной): .

Найдем произведение присоединенной матрицы и исходной . Получим . Таким образом матрица В – диагональная. На ее главной диагонали стоят определители исходной матрицы, а все остальные элементы – нули:

Аналогично можно показать, что .

Если разделить все элементы матрицы на |А|, то будет получена единичная матрица Е.

Таким образом , т.е. .

Докажем единственность обратной матрицы. Предположим, что существует другая обратная матрица для А, отличная от А -1 . Обозначим ее X. Тогда А * Х = Е. Умножим слева обе части равенства на А -1 .

А -1 * А * Х = А -1 * Е

Единственность доказана.

Итак, алгоритм вычисления обратной матрицы состоит из следующих шагов:

1. Найти определитель матрицы |А| . Если |А| = 0, то матрица А - вырожденная, и обратную матрицу найти нельзя. Если |А| ¹ 0, то переходят к следующему шагу.

2. Построить транспонированную матрицу А Т.

3. Найти алгебраические дополнения элементов транспонированной матрицы и построить присоединенную матрицу .

4. Вычислить обратную матрицу, разделив присоединенную матрицу на |А|.

5. Можно проверить правильность вычисления обратной матрицы в соответствии с определением: А -1 * А = А * А -1 = Е.

1. Найдем определитель этой матрицы по правилу треугольников:

Проверку опустим.

Можно доказать следующие свойства обращения матриц:

1) |А -1 | = 1/|А|

2) (А -1) -1 = А

3) (А m) -1 = (А -1) m

4) (АB) -1 = B -1 * А -1

5) (А -1) T = (А T) -1

Ранг матрицы

Минором k-го порядка матрицы А размера m х n называют определитель квадратной матрицы k-го порядка, которая получена из матрицы А вычеркиванием каких-либо строк и столбцов.

Из определения следует, что порядок минора не превосходит меньшего из ее размеров, т.е. k £ min {m; n}. Например, из матрицы А 5х3 можно получить квадратные подматрицы первого, второго и третьего порядков (соответственно, рассчитать миноры этих порядков).

Рангом матрицы называют наивысший порядок отличных от нуля миноров этой матрицы (обозначают rang А, или r(А)).

Из определения следует, что

1) ранг матрицы не превосходит меньшего из ее размеров, т.е.
r(А) £ min {m; n};

2) r(А) = 0 тогда и только тогда, когда матрица нулевая (все элементы матрицы равны нулю), т.е. r(А) = 0 Û А = 0;

3) для квадратной матрицы n-го порядка r(А) = n тогда и только тогда, когда эта матрица А невырожденная, т.е. r(А) = n Û |А| ¹ 0.

На самом деле, для этого достаточно вычислить только один такой минор (тот, который получен вычеркиванием третьего столбца (потому что в остальных будет присутствовать нулевой третий столбец, и поэтому они равны нулю).

По правилу треугольника = 1*2*(-3) + 3*1*2 + 3*(-1)*4 – 4*2*2 – 1*(-1)*1 – 3*3*(-3) = -6 +6 – 12 – 16 + 1 +27 = 0.

Поскольку все миноры третьего порядка нулевые, r(А) £ 2. Так как существует ненулевой минор второго порядка, например,

Очевидно, что использованные нами приемы (рассмотрение всевозможных миноров) не подходят для определения ранга в более сложных случаях ввиду большой трудоемкости. Обычно для нахождения ранга матрицы используют некоторые преобразования, которые называют элементарными :

1). Отбрасывание нулевых строк (столбцов).

2). Умножение всех элементов строки или столбца матрицы на число, отличное от нуля.

3). Изменение порядка строк (столбцов) матрицы.

4). Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5). Транспонирование.

Если матрица А получена из матрицы B элементарными преобразованиями, то эти матрицы называют эквивалентными и обозначают А ~ В.

Теорема . Элементарные преобразования матрицы не изменяют ее ранг.

Доказательство теоремы следует из свойств определителя матрицы. В самом деле, при этих преобразованиях определители квадратных матриц либо сохраняются, либо умножаются на число, не равное нулю. В результате наивысший порядок отличных от нуля миноров исходной матрицы остается прежним, т.е. ее ранг не меняются.

С помощью элементарных преобразований матрицу приводят к так называемому ступенчатому виду (преобразуют в ступенчатую матрицу ), т.е. добиваются, чтобы в эквивалентной матрице под главной диагональю стояли только нулевые элементы, а на главной диагонали – ненулевые:

Ранг ступенчатой матрицы равен r, так как вычеркиванием из нее столбцов, начиная с (r + 1)-го и дальше можно получить треугольную матрицу r-го порядка, определитель которой будет отличен от нуля, так как будет представлять собой произведение ненулевых элементов (следовательно, имеется минор r-го порядка, не равный нулю):

Пример. Найти ранг матрицы

1). Если а 11 = 0 (как в нашем случае), то перестановкой строк или столбцов добьемся того, чтобы а 11 ¹ 0. Здесь поменяем местами 1-ю и 2-ю строки матрицы:

2). Теперь а 11 ¹ 0. Элементарными преобразованиями добьемся того, чтобы все остальные элементы в первом столбце равнялись нулю. Во второй строке a 21 = 0. В третьей строке a 31 = -4. Чтобы вместо (-4) стоял 0, прибавим к третьей строке первую строку, умноженную на 2 (т.е. на (-а 31 /а 11) = -(-4)/2 =
= 2). Аналогично к четвертой строке прибавим первую строку (умноженную на единицу, т.е. на (-а 41 /а 11) = -(-2)/2 = 1).

3). В полученной матрице а 22 ¹ 0 (если бы было а 22 = 0, то можно было бы снова переставить строки). Добьемся, чтобы ниже диагонали во втором столбце тоже стояли нули. Для этого к 3-й и 4-й строкам прибавим вторую строку, умноженную на -3 ((-а 32 /а 22) = (-а 42 /а 22) = -(-3)/(-1) = -3):

4). В полученной матрице две последние строки – нулевые, и их можно отбросить:

Получена ступенчатая матрица, состоящая из двух строк. Следовательно, r(A) = 2.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Ниже указана одна и та же матрица в различных формах записи:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Нередко используется и такая запись:

$$ A_{m\times{n}}=(a_{ij}) $$

Здесь $(a_{ij})$ указывает на обозначение элементов матрицы $A$, т.е. говорит о том, что элементы матрицы $A$ обозначаются как $a_{ij}$. В развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Рассмотрим некоторую ненулевую строку матрицы $A$, т.е. такую строку, в которой есть хоть один элемент, отличный от нуля. Ведущим элементом ненулевой строки назовём её первый (считая слева направо) ненулевой элемент. Для примера рассмотрим такую матрицу:

$$W=\left(\begin{array}{cccc} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 12\\ 0 & -9 & 5 & 9 \end{array}\right)$$

Во второй строке ведущим будет четвёртый элемент, т.е. $w_{24}=12$, а в третьей строке ведущим будет второй элемент, т.е. $w_{32}=-9$.

Матрица $A_{m\times n}=\left(a_{ij}\right)$ называется ступенчатой , если она удовлетворяет двум условиям:

  1. Нулевые строки, если они есть, расположены ниже всех ненулевых строк.
  2. Номера ведущих элементов ненулевых строк образуют строго возрастающую последовательность, т.е. если $a_{1k_1}$, $a_{2k_2}$, ..., $a_{rk_r}$ - ведущие элементы ненулевых строк матрицы $A$, то $k_1\lt{k_2}\lt\ldots\lt{k_r}$.

Примеры ступенчатых матриц:

$$ \left(\begin{array}{cccccc} 0 & 0 & 2 & 0 & -4 & 1\\ 0 & 0 & 0 & 0 & -9 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right);\; \left(\begin{array}{cccc} 5 & -2 & 2 & -8\\ 0 & 4 & 0 & 0\\ 0 & 0 & 0 & -10 \end{array}\right). $$

Для сравнения: матрица $Q=\left(\begin{array}{ccccc} 2 & -2 & 0 & 1 & 9\\0 & 0 & 0 & 7 & 9\\0 & -5 & 0 & 10 & 6\end{array}\right)$ не является ступенчатой, так как нарушено второе условие в определении ступенчатой матрицы. Ведущие элементы во второй и третьей строках $q_{24}=7$ и $q_{32}=10$ имеют номера $k_2=4$ и $k_3=2$. Для ступенчатой матрицы должно быть выполнено условие $k_2\lt{k_3}$, которое в данном случае нарушено. Отмечу, что если поменять местами вторую и третью строки, то получим ступенчатую матрицу: $\left(\begin{array}{ccccc} 2 & -2 & 0 & 1 & 9\\0 & -5 & 0 & 10 & 6 \\0 & 0 & 0 & 7 & 9\end{array}\right)$.

Ступенчатую матрицу называют трапециевидной или трапецеидальной , если для ведущих элементов $a_{1k_1}$, $a_{2k_2}$, ..., $a_{rk_r}$ выполнены условия $k_1=1$, $k_2=2$,..., $k_r=r$, т.е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$ A_{m\times{n}} =\left(\begin{array} {cccccc} a_{11} & a_{12} & \ldots & a_{1r} & \ldots & a_{1n}\\ 0 & a_{22} & \ldots & a_{2r} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & \ldots & a_{rr} & \ldots & a_{rn}\\ 0 & 0 & \ldots & 0 & \ldots & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & \ldots & 0 & \ldots & 0 \end{array}\right) $$

Примеры трапециевидных матриц:

$$ \left(\begin{array}{cccccc} 4 & 0 & 2 & 0 & -4 & 1\\ 0 & -2 & 0 & 0 & -9 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right);\; \left(\begin{array}{cccc} 5 & -2 & 2 & -8\\ 0 & 4 & 0 & 0\\ 0 & 0 & -3 & -10 \end{array}\right). $$

Дадим ещё несколько определений для квадратных матриц. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.